

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Low-emission powertrain system [N1MiBP1>NUN]

Course

Field of study Year/Semester

Mechanical and Automotive Engineering 3/6

Area of study (specialization) Profile of study

general academic

Level of study Course offered in

first-cycle Polish

Form of study Requirements

part-time elective

Number of hours

Lecture Laboratory classes Other

9 18

Tutorials Projects/seminars

0 0

Number of credit points

3,00

Coordinators Lecturers

prof. dr hab. inż. Ireneusz Pielecha ireneusz.pielecha@put.poznan.pl

Prerequisites

KNOWLEDGE: the student has a basic knowledge of the design and construction of components and drive systems SKILLS: the student is able to integrate the obtained information, interpret it, draw conclusions, formulate and justify opinions SOCIAL COMPETENCES: the student is aware of the importance and understands the non-technical aspects and effects of transport activities

0

Course objective

Providing basic information on the construction of low-emission drive systems in passenger vehicles, trucks and buses, taking into account the latest solutions

Course-related learning outcomes

Knowledge:

Has knowledge in the field of physics, including the basics of classical mechanics, optics, electricity and magnetism, solid state physics, quantum and nuclear physics, necessary to understand specialist lectures in the field of the theory of construction materials and materials science, theory of machines and mechanisms, theory of electric drives and mechatronic systems.

Has basic knowledge of technical thermodynamics, ie the theory of thermodynamic changes, heat flow,

thermal machines and heating, drying and cooling devices.

Has elementary knowledge of electric drives in machines, including three-phase current, AC and DC motors, frequency and voltage converters, power electronics.

Skills:

Can obtain information from literature, the Internet, databases and other sources. Can integrate the obtained information, interpret and draw conclusions from it, and create and justify opinions.

Can use learned mathematical theories to create and analyze simple mathematical models of machines and their elements, and simple technical systems.

Can develop a manual and repair a simple machine from the group of machines covered by the selected certification path.

Can create a system diagram, select elements and perform basic calculations using ready-made computational packages of mechanical, hydrostatic, electric or hybrid machine drive system.

Social competences:

Is ready to critically assess his knowledge and received content.

Is ready to recognize the importance of knowledge in solving cognitive and practical problems and to consult experts in case of difficulties in solving the problem on his own.

Is ready to fulfill social obligations and co-organize activities for the benefit of the social environment.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

For discussion, ongoing preparation and activity in class. Written credit. Mandatory individual reports from exercises and laboratories.

Programme content

Possibilities of using low-emission drives in means of transport. Classification and characteristics of drives (hybrid, electric, fuel cells and others). Elements and structure of the drive train, examples of low-emission drive structures in cars, trucks and buses. Fuel cell drive, drive with the design of internal combustion engines powered by low-emission fuels. Examples of low-emission drives design in various means of transport: advantages, disadvantages, application possibilities. Emissivity of low-emission drives: their advantages and disadvantages. Development tendencies of such drives.

The laboratory includes exercises with the use of fuel cells: PEM, methanol fueled, ethanol powered, salt water powered. Analysis of the operation of cells in a cogeneration system. Analysis of fuel cell drives with batteries.

Course topics

- 1. Possibilities of using low-emission drives in means of transport.
- 2. Classification and characteristics of drives (hybrid, electric, fuel cells and others).
- 3. Elements and structure of the drive train, examples of lowemission drive structures in cars, trucks and buses.
- 4. Fuel cell drive, drive with the design of internal combustion engines powered by low-emission fuels. Examples of low-emission drives design in various

means of transport: advantages, disadvantages, application possibilities. Emissivity of low-emission drives: their advantages and disadvantages. Development tendencies of such drives.

The laboratory includes exercises with the use of fuel cells: PEM, methanol fueled, ethanol powered, salt water powered. Analysis of the operation of cells in a cogeneration system. Analysis of fuel cell drives with batteries.

Teaching methods

- 1. Lecture with multimedia presentation
- 2. Exercises solving problems
- 3. Laboratory

Bibliography

Basic

- 1. Merkisz J., Pielecha I.: Układy mechaniczne pojazdów hybrydowych. Wydawnictwo Politechniki Poznańskiej, Poznań 2015.
- 2. Merkisz J., Pielecha I.: Układy elektryczne pojazdów hybrydowych. Wydawnictwo Politechniki Poznańskiej, Poznań 2015
- 3. Merkisz J., Pielecha I.: Alternatywne napędy pojazdów. Wydawnictwo Politechniki Poznańskiej, Poznań 2006.
- 4. Merkisz J., Pielecha I.: Alternatywne paliwa i układy napędowe pojazdów. Wydawnictwo Politechniki Poznańskiej, Poznań 2004.
- 5. Czerwiński A.: Akumulatory, baterie, ogniwa. WKiŁ, Warszawa 2005.
- 6. Szumanowski A.: Akumulacja energii w pojazdach, WKiŁ, Warszawa 1984. Additional
- 1. Conference materials on hybrid drives
- 2. Combustion Engines quarterly

Breakdown of average student's workload

	Hours	ECTS
Total workload	75	3,00
Classes requiring direct contact with the teacher	27	1,00
Student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam, project preparation)	48	2,00